Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 809: 151141, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34688761

RESUMO

Environmental bacteria contain a wealth of untapped potential in the form of biodegradative genes. Leveraging this potential can often be confounded by a lack of understanding of fundamental survival strategies, like dormancy, for environmental stress. Investigating bacterial dormancy-to-degradation relationships enables improvement of bioremediation. Here, we couple genomic and functional assessment to provide context for key attributes of the organic pollutant-degrading strain Rhodococcus biphenylivorans TG9. Whole genome sequencing, pangenome analysis and functional characterization were performed to elucidate important genes and gene products, including antimicrobial resistance, dormancy, and degradation. Rhodococcus as a genus has strong potential for degradation and dormancy, which we demonstrate using R. biphenylivorans TG9 as a model. We identified four Resuscitation-promoting factor (Rpf) encoding genes in TG9 involved in dormancy and resuscitation. We demonstrate that R. biphenylivorans TG9 grows on fourteen typical organic pollutants, and exhibits a robust ability to degrade biphenyl and several congeners of polychlorinated biphenyls. We further induced TG9 into a dormant state and demonstrated pronounced differences in morphology and activity. Together, these results expand our understanding of the genus Rhodococcus and the relationship between dormancy and biodegradation in the presence of environmental stressors.


Assuntos
Poluentes Ambientais , Bifenilos Policlorados , Rhodococcus , Biodegradação Ambiental , Rhodococcus/genética
2.
J Hazard Mater ; 424(Pt D): 127712, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34865898

RESUMO

Antibiotics are ubiquitous in soil due to natural ecological competition, as well as emerging contaminants due to anthropogenic inputs. Under environmental factors like antibiotic stress, some bacteria, including those that degrade environmental pollutants, can enter a dormant state as a survival strategy, thereby limiting their metabolic activity and function. Dormancy has a critical influence on the degradative activity of bacteria, dramatically decreasing the rate at which they transform organic pollutants. To better understand this phenomenon in environmental pollutant-degrading bacteria, we investigated dormancy transitions induced with norfloxacin in Rhodococcus biphenylivorans TG9T using next-generation proteomics, proteogenomics, and additional experiments. Our results suggest that exposure to norfloxacin inhibited DNA replication, which led to damage to the cell. Dormant cells then likely triggered DNA repair, particularly homologous recombination, for continued survival. The results also indicated that substrate transport (ATP-binding cassette transporter), ATP production, and the tricarboxylic acid (TCA) cycle were repressed during dormancy, and degradation of organic pollutants was down-regulated. Given the widespread phenomenon of dormancy among bacteria involved in pollutant removal systems, this study improves our understanding of possible implications of antibiotic survival strategies on biotransformation of mixtures containing antibiotics as well as other organics.


Assuntos
Poluentes Ambientais , Rhodococcus , Antibacterianos/toxicidade , Biodegradação Ambiental , Rhodococcus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...